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SUMMARY

As the second part of ‘biased’ oceanic data assimilation (ODA) twin experiment stud-

ies using coupled GCMs (CGCMs), here we examined the impact of ensemble circulation-

dependent inflation filter (EcdiF) on oceanic climate detection. Two CGCMs – GFDL’s

CM2.0 and CM2.1 are used. Observations are produced by projecting the CM2.0’s sim-

ulation onto the 2005 Argo network and assimilated into CM2.1. Because of model bias

and limitation of the representation of a finite ensemble for the low frequency deep ocean

variability, a standard ensemble filter (ENSF) fails to construct a coherent vertical structure

of ocean and develops spurious velocities. EcdiF uses pre-computed standard deviations of

anomalies to inflate the covariance for deep ocean data constraints. The EcdiF improves

substantially the tropical undercurrent and upwelling and the associated Western Boundary

Current systems as well as subtropical gyre structure. Consequently, the estimates of the

world ocean’s hydrographic features such as global overturning, pycnocline depth and its

correlation with sea surface height, are improved dramatically. Decadal trends of the basin

scale heat content and salinity and the seasonal-interannual variability of tropical oceans are

constructed coherently.

Results also showed that the Indian Ocean, especially the North Indian Ocean, is the most

sensitive basin to the covariance formulation used in the assimilation, probably because of

the stronger atmospheric feedbacks. The local thermohaline structure plays a leading-order

important role for estimating the decadal trend of the North Atlantic meridional overturning

circulation (NA MOC) but more accurate estimate of the NA MOC’s variability requires

better external forcings and internal heat and salt transports.
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1 Introduction

Viewing the evolution of climate states as a continuous stochastic dynamical process, the

coupled ensemble data assimilation (CDA) system at GFDL (Geophysical Fluid Dynamics

Laboratory, NOAA) solves for a temporally-varying probability density function (PDF) of

climate states by combining data and models (Zhang et al. 2007). The assimilation-generated

temporally-varying PDF of climate states is a complete solution for climate estimation, given

atmospheric and oceanic observations. Due to incomplete understanding of radiative effects

in various components of the earth system and inaccurate numerical implementation of phys-

ical processes, coupled climate models are “biased,” in which the model always drifts away

from the real world. Such model bias usually appears systematically colder/warmer and/or

fresher/saltier in the deep oceans, and could induce computational modes in the results of

oceanic data assimilation (ODA) due to the shocks between data and model background. It

is difficult to identify the real data-sampled signals from the bias-generated artifacts in ODA

products.

In order to examine the impact of coupled model’s bias on ODA, previous study (Zhang

and Rosati 2008) has already designed an imperfect ODA twin experiment using two coupled

general circulation models (CGCMs) that are biased with respect to each other (Delworth

et al. 2006; Gnanadesikan et al. 2006; Zhang et al. 2008; Zhang and Rosati 2008), in which

observations taken from one CGCM based on the 2005 Argo network are assimilated into

the other. Under this imperfect model twin experiment framework, both the model bias and

the true solution of data assimilation problem are unambiguously defined a priori so that all

aspects of the bias’s impact on oceanic climate estimation can be quantatified.

First it was found that the assimilating imperfect model with a standard ensemble filter

(ENSF hereafter) can successfully recover the upper ocean temperature and salinity from

observations but fails to converge in the deep ocean. This failure occurs because in deep
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ocean the model bias is relatively large compared to the ocean’s intrinsic variability which

is represented by the spread of a finite ensemble so that the filtering analysis based on the

ensemble variance cannot produce a sufficient data constraint for deep ocean. Furthermore,

the inconsistency between well-constrained upper and poorly-constrained deep oceans gen-

erates spurious currents and vertical motions due to incorrect pressure gradients derived

from incoherent vertical structure. Then to cope with this problem an ensemble circulation-

dependent inflation filter (EcdiF hereafter) was designed based on the covariance inflation

theory of filtering (Chapter 8, Jazwinski 1970). EcdiF uses pre-computed standard devia-

tions of anomalies to inflate the covariance wherever a small ensemble spread would otherwise

make the model over-confident and rejecting data. Verification shows that EcdiF dramati-

cally improves the estimate of oceanic currents and vertical motions from ENSF due to its

improved vertical structure of ocean.

As a follow-up of the previous study (Zhang and Rosati 2008) that focused on the EcdiF’s

algorithm design and tuning, this study addresses the impact of EcdiF on oceanic climate

detection (estimation). Three questions will be answered: 1) What is the impact of EcdiF

on hydrographic features of the world ocean? 2) What is the impact of the EcdiF-refined un-

dercurrent and vertical motions on the tropical ocean’s climatology and ENSO’s variability?

3) What is the impact of the EcdiF-improved heat and salt transports on the North Atlantic

meridional overturning circulation? After a summary on methodology in section 2, section 3

examines the time mean global fields and section 4 examines decadal trends of each basin as

well as the seasonal-interannual variability of tropical oceans. The analyses and diagnostics

of the North Atlantic meridional overturning circulation are given in section 5. Conclusions

and discussions are given in section 6.
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2 Methodolgy

2.1 Two ‘biased’ CGCMs at GFDL

Two fully-coupled models, CM2.0 and CM2.1 were developed at GFDL, which use two

different atmospheric models to couple with the same ocean (Fourth Version of Modular

Ocean Model, MOM4) model, sea ice simulator (SIS) and land model. The two atmospheric

models have different dynamical cores but the same vertical (24 levels) and horizontal (2.5◦

longitude by 2◦ latitude) resolution, identical physics and land processes but with their own

tuned values for parameters. The atmospheric dynamical cores in CM2.0 and CM2.1 are the

B-grid finite-difference scheme (Wyman 1996; GAMDT 2004) and the finite-volume scheme

(Lin 2004).

The MOM4 is configured with 50 vertical levels (22 levels of 10 m thickness for each in

the top 220 m), 1◦× 1◦ horizontal B-grid resolution telescoping to 1/3◦ meridional spacing

near the equator. The model has an explicit free surface with freshwater fluxes exchanged

between atmosphere and ocean. Parameterized physical processes include K-profile parame-

terization (KPP) vertical mixing, neutral physics, a spatially-dependent anisotropic viscosity,

a shortwave radiative penetration depth that depends on a prescribed climatological ocean

color. Insolation varies diurnally and the wind stress at the ocean surface is computed using

the velocity of the wind relative to the surface currents. An efficient time-stepping scheme

(Griffies 2005) is employed. The SIS in the coupled model is a dynamical ice model with three

vertical layers (one snow and two ice) and five ice-thickness categories. The elastic-viscous-

plastic technique (Hunke and Dukowicz 1997) is used to calculate ice internal stresses, and

the thermodynamics is a modified Semtner three-layer scheme (Winton 2000). Four major

model components (ocean/atmosphere/land/sea-ice) in the coupled system interact through

the exchange fluxes (see Fig. 2 in Zhang et al. 2008).
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Detailed description for CM2.0 and CM2.1 and their major features for climate simulation

can be found in Delworth et al. (2006) and Gnanadesikan et al. (2006). A specific comment

we want to make here is that these two models produce ‘biased’ oceanic states with respect

to each other, e.g., CM2.1 is overall 0.2oC colder and 0.01 PSU fresher than in CM2.0 for the

ocean below 1 km (see Zhang and Rosati 2008). Given this characteristic, the next section

uses these two models to conduct imperfect model assimilation twin experiments.

2.2 Imperfect model assimilation twin experiments

“Twin experiment”, or called “observing system simulation experiment” (OSSE) is used

in this study. However, different from a perfect model study, this study uses two fully-

coupled general circulation models (CGCMs) that produce different climate states (‘biased’

with respect to each other): one can be thought of as the “true” oceanic states along with

their samples (observations) and the other tries to recover the “truth” by assimilating those

observations. It could be therefore called a “biased twin experiment.”

Specifically, we use CM2.0 to produce a “true” climate variation and corresponding “ob-

servations,” and CM2.1 as assimilation model to attempt to retrieve the “truth” based on

the “observed” data. Same as in Zhang et al. (2008) and Zhang and Rosati (2008), the

GFDL’s IPCC historical simulation produced by CM2.0 is set as the target (called TRUTH

hereafter) of assimilation experiments. As described there, the standard IPCC simulation

is initialized by a 300-year spinup from the previous integration (Stouffer et al. 2004) and

forced by the temporally-evolving greenhouse gas and natural aerosol (GHGNA) during 1861

to 2000, which is referred to as the model calendar. The other set GFDL’s IPCC model in-

tegration starting from the same initial conditions and using the same radiative forcings as

above, but produced by CM2.1, is set as a free model control, called CTL, a reference for

evaluating the assimilation’s quality.
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The OSSE in this study attempts to simulate the 21st-century Argo observing system.

First the daily data of oceanic temperature and salinity in the CM2.0’s IPCC simulation

from 1 January 1976 up to 31 December 2000 are projected onto the Argo network by a

a tri-linear interpolation sampling process based on the 2005 Argo’s locations and depth

(Zhang et al. 2008). Then a whitenoise is superimposed to simulate random observational

errors. Note no explicit surface data are used in this study to address how to process in situ

measurements to get a coherent ocean vertical structure.

Based on the CTL states, the ensemble initial conditions (ICs) for assimilation are formed

by imposing yearly-separated atmospheric (including land) states centered at 00 UTC 1 Jan-

uary 1976 at which the oceanic (including sea-ice) state is taken. For example, the 6-member

ensemble initial conditions that are used in the next section assimilation experiments are pro-

duced by combining the atmospheric and land states at 00 UTC 1 January of 1973-1978 and

the oceanic and sea-ice states at 00 UTC 1 January 1976. For a coupled system, once an

initial disturbance occurs in the atmosphere or other coupled model components, the strong

internal variability of atmospheric circulations and oceanic state’s responses to atmospheric

forcings will eventually produce inter-ensemble variations through feedbacks among these

coupled components. Then the ensemble CGCM’s integrations form a simulation for the

stochastic feature of climate evolution.

2.3 Ensemble circulation-dependent inflation filter (EcdiF) vs. stan-

dard ensemble filter (ENSF)

Filtering theory (e.g. Jazwinski 1970) is based on the probabilistic nature of a dynamical

system such as the atmosphere-ocean coupled system of the earth. An ensemble filter uses a

Monte Carlo approach to simulate the model-described prior PDF by finite-ensemble model

realizations to project an observational signal onto model space. In this context, CDA solves

for the problem of sampling the probability of states of a coupled dynamical system given
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noisy and sparse measurements, which have multi-variate joint-distribution.

First, at an observational location the estimated variance from model ensemble is com-

pared to the observational vaiance to determine the shift of the prior ensemble mean and

the adjustment of the ensemble spread. This process produces eventually an observational

increment for each ensemble member. Then the estimated covariance from model ensem-

ble is used to distribute the observational increment onto model grids and/or transform

information between different physical spaces by the following linear regression process (for

ENSF):

∆xi,j = Ωj,k

Cov(xj, yk)

σyk
2

∆yo
i,k = Ωj,kr(xj, yk)∆yo

i,k

= Ωj,kρ(xj, yk)
σxj

σyk

∆yo
i,k = Ωj,kρ(xj, yk)κ(xj, yk)∆yo

i,k. (1)

Here ∆yo
i,k and ∆xi,j represent respectively the observational increment at the kth observa-

tional location and the adjustment of the oceanic state variable at the jth grid-point for the

ith ensemble member. ρ(xj, yk) and r(xj, yk) represent the correlation coefficient and the

linear regression coefficient between the kth observational datum, xj and yk, where yk is the

model’s estimate for the observation yo
k. κ(xj, yk) is the ratio of estimated standard devia-

tions from model ensemble for xj and yk. Ω is the covariance localization function [Ω(a, d)

in Zhang et al. (2005)] which is determined only by the distance between j, k locations.

Note that since all error statistics here are instantaneously evaluated by ensemble model

integrations, Cov(xj, yk), ρ(xj, yk), σyk
, σxj

and r(xj, yk) are functions of time. All terms in

Eq. (1) (including the observation) have however the common time level, t, so for all of them

the subscript t is dropped.

The EcdiF algorithm modifies the linear regression equation (Zhang and Rosati 2008) as

∆xi,j =











Ωj,kρt(xj, yk) [ 0.5×(1−α)κt(xj ,yk)

(1−α)κt(xj ,yk)+ακ0(xj ,yk)
κt(xj, yk)∆yo

i,k,t

+
0.5×ακ0(xj ,yk)

(1−α)κt(xj ,yk)+ακ0(xj ,yk)
κ0(xj, yk)∆yo

i,k,0

]
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and

Ωj,k =







Ω(ah, dh
j,k)Ω(av, dv

j,k), Do 6= Do
bottom or Do = Do

bottom but Z ≤ Do
bottom

Ω(ah, dh
j,k)Ω(av

b , d
v
j,k), Do = Do

bottom and Z > Do
bottom

(2)

Here κ0(xj, yk) is the ratio of the pre-computed standard deviations (σ0) for xj and yk

using the historical dataset of oceanic states, and ∆yo
i,k,0 is the observational increment

computed by σ0 [the prior background standard deviation, σp, in Eqs. (2)-(5) of Zhang et

al. (2007) is replaced by the corresponding σ0]. ah and av are the e-folding horizontal and

vertical scales in the covariance localization function respectively, and dh
j,k and dv

j,k is the

horizontal and vertical distance between xj and yk. Do and Do
bottom represent respectively

the current observation depth and the depth at the end of an observed profile, and Z is the

vertical coordinate. av
b is a vertical impact scale that controls the impact depth to which the

adjustment from the bottom of an observed profile is extended. α is added in this study and

used to set an on-off switch of the inflation.

Except for the following two aspects in this study, all other parameters are the same as

Zhang and Rosati (2008) (see Table 1):

1) The temperature’s vertical extension scale av
b is the half of the salinity’s.

2) For this 6-member experiment, in the North Atlantic beyond 20oN, α is set to be 0 to

sustain active convections in this region (see section 5) (as the ensemble size increases,

α could be set to be 0 poleward of 20o to sustain convections and gyre structure there).

With the ensemble initial conditions and the oceanic “observations” described in sec-

tion 2.2, ENSF and EcdiF are run for 25 years (up to 31 December 2000) using 6-member

ensemble with the covariance localization and observation smoothing technique (Zhang et al.

2005) on a daily assimilation cycle. Next, starting from examining major hydrographic fea-

tures produced by EcdiF, the impact of EcdiF on oceanic climate detection will be analyzed

and discussed thoroughly.
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3 Global annual mean fields

3.1 Time mean of heat content, salinity, velocities and wind stresses

We leave off the first 5 years as the assimilation spinup period; all diagnostics and analyses

next are based on the last 20 years of assimilation data, i.e. from 1 January 1981 to 31

December 2000.

First Fig. 1 gives a brief summary of the EcdiF’s assimilation improvement over the

ENSF in the tropical oceans (20oS-20oN average). Compared to CTL, although ENSF re-

duces greatly the potential temperature (temperature hereafter) and salinity errors in upper

oceans, it produces extra errors for currents, and vertical velocity. EcdiF further reduces the

error of temperature and salinity, especially for the deep ocean’s below 1 km, by using the

pre-computed standard deviation of anomalies to inflate the covariance and an appropriate

av
b value. This refinement of temperature and salinity appears critically important for elim-

inating the spurious currents and vertical motions in ENSF (see lower three panels at right

column).

The 20-year time mean of assimilation errors of oceanic heat content (averaged temper-

ature) (left) and salinity (right) over 0-4 km is presented in Fig. 2. Compared to CTL,

both ENSF and EcdiF make the oceanic temperature and salinity converge to TRUTH to

a large extent. However, in ENSF, due to its inconsistent convergent rate in the upper and

deep oceans the vertical structure of the assimilating ocean does not coherently converge

to TRUTH. This develops spurious currents and vertical velocity (see the lower 3 panels at

the middle column in Fig. 1). These spurious vertical motions can develop computational

Kalvin waves. The eastward-propagating Kalvin waves and their reflection at the east costal

boundary of the Pacific Ocean maintain the time mean error centers over the tropical east

Pacific Ocean. The extra error reduction created by EcdiF is critical for constructing the
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watermass’s structure so that the spurious currents and vertical velocity in ENSF are elim-

inated (lower three panels at the right column in Fig. 1). Thus, the error centers of the

tropical east Pacific Ocean vanish. The improvement of currents and vertical velocity also

gives rise to the changes in thermohaline properties (most of them are improved) at middle

and high latitudes. These changes are, on one hand, directly related to the improvement of

hydrography due to the oceanic data constraint. They are, on the other hand, also associ-

ated with the changes of other coupled components (atmospheric conditions, for instance)

due to the improvement on sea surface temperature (SST) in EcdiF (left panels of Fig. 3).

Although the new adjustment method in EcdiF can also improve the data constraint on

upper oceans, the signifcant improvement of the SST shall be attributed to more consistent

velocities. The major SST’s error reduction occurs at the tropical Pacific Ocean, the North-

ern Atlantic Ocean, and the high latitude Southern Pacific Ocean. The former one reflects

the sensitivity of the tropical Pacific SSTs to the undercurrent and upwelling/dowwelling

while the latter two reflect the improvement of the estimate of gyres’ location and structure

due to the improvement of velocity estimates. The improved tropical SSTs must improve

precipitation in the atmosphere, which leads to the improvement of the sea surface salinity

(SSS) in tropics (right panels of Fig. 3). A noticeble phenomenen is that the surface coastal

areas of the Atlantic-Antarctic Ocean in both assimilations become even colder (compared to

CTL), especially for EcdiF. This must be associated to the ice activities in Antarctic caused

by the changes of atmospheric and oceanic conditions in assimilations, and the discovery of

the mechanism requires further studies.

This study is focusing on oceanic climate detection and not addressing the impact of

the EcdiF-improved oceanic states on the atmospheric circulations. Here we check the time

mean wind stress, a synthesis product of the atmospheric feedback ODA. The time mean of

zonal (τx, left) and meridional (τy, right) wind stress errors is shown in Fig. 4. Basically, the

EcdiF’s wind stress shares most of features of the ENSF’s. Relative to the error reduction
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from the CTL to ENSF, except for the Indian Ocean, especially the North Indian Ocean,

the improvement of τx produced by EcdiF from ENSF is in a negligible range while the error

reduction of τy produced by EcdiF from ENSF is greater (nearly double) than the error

reduction produced by ENSF from CTL, especially for tropics. For example, while ENSF

reduces the τy Rms error by 11% (5%) from CTL, EcdiF reduces the τy error by 22% (11%)

from ENSF for the tropics/globe. (the North Indian Ocean is the most sensitive basin to

the covariance formulation used in the assimilation. This will be expanded next.) This can

be understood as τx is basically determined by the meridional gradient of SSTs, which is the

leading order information from ODA’s data constraint, while τy is more tied with the zonal

gradient of SSTs. Correctly estimating the zonal gradient of SSTs requires a refined local

structure of circulations. Thus, the improved currents and vertical velocity in EcdiF have

stronger impact on τy than on τx. Consistently with the improved SSTs, the major improved

regions of τy are the tropical Pacific Ocean and the Northern Atlantic Ocean.

3.2 Meridional mass, heat and salt transport

This section examines the capability of EcdiF to sustain the general hydrographic features

established in a coupled system, which is critically important for our motivation of initializing

numerical climate predictions from seasonal-interanuual (SI) up to multi-decadal time scales.

The global overturning stream function in depth space reflects the pole-to-pole circu-

lation associated with the North Atlantic Deep Water. As described in Gnanadesikan et

al. (2006), while CM2.1 (CTL) and CM2.0 (TRUTH) share a common character – most of

water downwelling in the northern oceans travels all the way to the Southern Ocean, the

CTL shows a stronger and deeper-penetrating overtruning at high latitudes (see their dif-

ference in panel a of Fig. 5, called “CTL errors”). Figs. 5bc present the assimilation errors

of the global overturning streamfunction produced by ENSF and EcdiF. In ENSF, due to
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too strong spurious upwelling/downwelling at the tropical deep oceans induced by incorrect

vertical structure, the pole-to-pole circulation is broken and appears a reverse circulation

at tropics (see panel b). More analyses in the next will show that it is the North Indian

Ocean that makes the tropical reverse circulation, where the worst destruction of coupled

balances occurs due to the inconsistent oceanic data constraints in ENSF. The improved

vertical structure of data constraints in EcdiF eliminates the spurious velocity mostly so as

to reduec the global overturning errors greatly. The fact that the EcdiF’s global overturning

errors stay in the same level as CTL’s (or a little smaller) (compare panel c to panel a)

means that the EcdiF’s adjustment overall sustains the model balance in a global view.

In order to show how differently ENSF and EcdiF assimilations maintain the oceanic

circulations balanced with sea surface wind forcings, the global overturning in potential

density space (σ2) is presented in Figs. 5def . In a balanced model simulation, the overturning

stream function in σ2 space represents the surface wind-driven circulation which plays an

important role in heat/salt transport (Gnanadesikan et al. 2006; Bocaletti et al. 2005).

Again, the differnce of model simulated overturning in σ2 space (panel d) reflects the wind

stress’s difference in CM2.0 and CM2.1 (Gnanadesikan et al. 2006). However, the ENSF-

produced spurious velocities in tropics damage seriously the wind-driven circulations below

mixing layer (σ2 > 1032) and generates too much stronger watermass transformation crossing

the isopycnal surfaces. This leads that the northward heat/salt transport at the equatorial

region is completely destroyed (red lines in Fig. 6bd) and a reverse circulation (deep water

travels from south to north) generated. While the spurious velocities induced from incosistent

data constraints is eliminated by EcdiF, the watermass transformation (panel f of Fig. 5)

and the heat/salt transport (blue lines in Fig. 6bd) are dramatically improved.

The global distributions of the northward heat and salt transport errors in ENSF and

EcdiF are presented in Figs. 7bcef . Figures 7be show that the worst destruction of the
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northward heat/salt transport at the equatorial region occurs in the Indian Ocean. The

further analyses and diagnostics in following sections will demonstrate that the Indian Ocean

is the most sensitive basin on whether an ODA algorithm performs the vertically-consistent

data constraint or not. This can be explained by the machenism of the formation of the

Indian Ocean’s circulations, which requires that more subtle balance set by the atmospheric

conditions be sustained as the oceanic state is modified by ODA. This point will be expanded

in sections 4.1 and 5. The northward heat/salt transport is mainly carried out by the Western

Boundary Current (WBC) systems and gyre systems (Figs. 7ad). Besides the Indian Ocean,

naturally, the improvement of the heat/salt transport produced by EcdiF occurs mainly at

the WBC systems and gyre regions (compare panels cf to panels be of Figs. 7).

The zonal-depth integrals of the world ocean heat content (Fig. 6a) and salinity (6c) show

that although the assimilated temperature and salinity in both ENSF (red lines) and EcdiF

(blue lines) in a whole column coverges to TRUTH (black lines) from the model control

(green lines) in nearly the same amount, the interior structure of circulations they generate

has significant difference. This phenomenon says that we have to be cautious when we see

the convergence of temperature and salinity in evaluating an ODA product. In addition,

from Figs. 5 and 6 as well as Fig. 7, we still notice some EcdiF errors greater than the

CTL’s or the ENSF’s, especially for the transport at high latitudes of the Southern Ocean.

We may attribute those errors to the discrepancy between the constrained ocean and the

free atmosphere, and expect more improvement on oceanic state estimate when both ocean

atmosphere are constrined by data, which will be explored in follow-up studies.

3.3 Pycnocline and sea surface height (SSH)

Pycnocline represents a sharp discontinuity boundary layer between light and dense water.

The physical property of light (dense) waters above (below) the boundary is set in the low
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latitude surface (high latitudes). Thus, the time mean pycnocline depth at middle and low

latitudes is another interesting synthesis measure of the general transport of heat, salt and

other tracers. It also is an interesting measure of the assimilation-estimated hydrography.

Following Gnanadesikan (1999) and Park and Bryan (2000), the pycnocline depth Zσ is

defined as

Zσ =
∫ 0

z=−H
∆σ2zdz/

∫ 0

z=−H
∆σ2dz, (3)

where σ2 is potential density refereneced to 2 km and ∆σ2 = σ2(z) - σ2(zmax) (zmax = 2.5

km).

Considering that the water property at high latitudes is strongly influenced by external

forcings there – atmospheric fluxes, ice melting, run-off from land etc., in this ODA study

we only examine the estimated pycnocline between 40oS - 40oN. First, referred to TRUTH

(black line in Fig. 8), the zonal mean of the 20-year averaged pycnocline depth produced

by EcdiF (blue line) shows a dramatical improvement on the estimate of pycnocline depth

from the ENSF’s (red line). The assimilation error distributions (Figs. 9bc) show although

the assimilation errors in both ENSF and EcdiF are somewhat reduced (9% and 45% of

Rms by ENSF and EcdiF respectively) compared to the difference of two model (CM2.1-

CM2.0, called CTL errors in Fig. 9a), ENSF overshoots the correction in most of basins

[mean error changes from -46 m (CTL) to 31 m (ENSF) and 10 m (EcdiF)]. The negative

values of CTL errors in most regions reflect stronger overturning and its deeper penetration

in CM2.1 (than in CM2.0) (Gnanadesikan et al. 2006). The overshooting caused by the

spurious vertical motions due to inconsistent data constraints in upper and deep oceans in

ENSF occurs mainly in the tropical oceans and the North Atlantic where correctly-estimated

upwelling and convection play important roles for obtainning a correct water property. The

low correlation of the ENSF’s pycnocline depth with the TRUTH (0.92) relative to the CTL’s

(0.96) means that due to the existence of these spurious velocities, ENSF cannot produce
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a correct structure of light/dense waters. After eliminating these spurious velocities, the

EcdiF assimilation recovers the water property well.

In the self-balanced oceanic states produced by model simulation, the pycnocline depth

is a mirror of the time mean sea surface height (SSH). It is expected that the ODA-generated

adjustment for oceanic states also maintains this kind of physical balances. As the contrast

of the pycnocline depth, Figs. 9def present the SSH errors in CTL, ENSF and EcdiF. The

SSH’s differences of two models are basically represented by the differences of their pycnocline

depths (compare panel d to panel a). Here we define a correlation of innovations of pycnocline

depth and SSH as a measure of how much an ODA algorithm to sustain the internal balance

of oceanic states. For example, the correlation computed by 2-decade’s tendencies (the 10-

year mean of the 1990’s minus the 10-year mean of the 1980’s) of pycnocline depth and SSH

in model is around -0.7 (-0.73 for CM2.0 and -0.63 for CM2.1). However, persistently being

contaminated by spurious upwelling and convection, the ENSF’s SSH tendency completely

loses the correlation with the pycnocline depth’s (-0.07) although the ENSF assimilation

reduces the SSH’s errors from CTL, while the EcdiF assimilation enhances the correlation

of SSH’s tendency with the pycnocline depth’s up to -0.43 while it reduces further the SSH’s

errors.

4 Decadal trends and seasonal-inteannual (SI) variabil-

ity

4.1 Trends of basin scale heat content and salinity

Time series of anomalies of basin or global averaged temperature (salinity) over top 4 km

are presented in Fig. 10 (Fig. 11). (Note for comparison all anomalies are computed using

the TRUTH’s climatology.) Both models show a roughly 0.002oC/year warming trend in the

top 4 km world Ocean although they have a -0.35oC (CM2.1-CM2.0) bias in climatological
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level, and the Atlantic and Indian Oceans are the major contributors of the warming trend

(black lines for CM2.0, called TRUTH; green lines for CM2.1, called CTL). The warming

trend can be attributed to their common GHGNA external forcings. No significant trend is

found in the integral of salinity in individual basins and the World Ocean but the bias of

salinity (CM2.1 vs. CM2.0) is obvious in all basins.

Except for the North Atlantic Ocean, in all other basins the assimilating model (CM2.1)

shows a cold bias to TRUTH (CM2.0). The biggest cold bias of CM2.1 relative to CM2.0 is

found in the North Indian, close to -1oC. Opposit to a nearly-uniform cold bias, every basin

has its own fresh or salty bias. A net result is that the top 4 km World Ocean maintain a 0.002

PSU tiny fresh bias. Overall speaking, except for a little overshooting in the temperature

of the South Atlantic Ocean and the salinity of the North Pacific Ocean, both ENSF (red

lines) and EcdiF (blue lines) show converging to TRUTH from CTL, i.e. reducing the biases

dramatically (the North Indian’s temperature bias is reduced to -0.35oC and its salinity bias

is reduecd to -0.1 PSU from -0.16 PSU, for instance). Compared to ENSF, EcdiF speeds up

the convergence of heat content and salinity in terms of their integrals in the basin water

volume, and also EcdiF further reduces the biases except for the South Atlantic Ocean.

Due to the effect of cancellation, the net World Ocean’s salinity bias is dominant by the

overshooting of certain individual basin. This leads that the assimilation’s benefit cannot be

seen in the world Ocean’s salinity bias (either from CTL to ENSF or from ENSF to EcdiF)

although the salinity’s bias is apparently reduced in all other basins in either case.

Interestingly, the greatest improvement made by EcdiF is found in the North Indian

Ocean and the Arctic Ocean for both temperature and salinity. In the North Indian Ocean

the temperature’s bias is further reduced to -0.05oC while the salinity’s bias is eliminated

almost completely. Another interesting phenomenon in the North Indian Ocean is that

the anomalies (both temperature and salinity) produced by ENSF shows a computational
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seasonal-cycle-like fluctuation while EcdiF does not. Given the fact that the variability of

the North Indian Ocean’s circulations are strongly influenced by the Indian monsoon system,

ones might attribute this artifact variability to a different seasonal-cycle phase of the Indian

monsoon driven by the ENSF-generated SST. However, neither SSTs and wind stresses over

the North Indian Ocean in ENSF present any noticeble seasonal-cycle-like oscillation. In-

stead, the SST distributions in ENSF and EcdiF are very similar (see Fig. 3). In fact, Fig. 10

tell us that this seasonal-cycle-like artifact variability in ENSF is induced by the vertically-

inconsistent data constraint in the ODA algorithm, which persistently conflicts with the

monsoon system’s driving. These phenomena suggest that atmospheric data constraint in

a CDA framework is particularly important for estimating the North Indian Ocean’s state.

And also, improving ocean model errors is very important to make a CDA approach suc-

cessful. These will be discussed in more details by the follow-up studies about the impact of

atmospheric data constraint on oceanic climate estimation.

While the ENSF-generated heat content in other basins converges to TRUTH, the Arctic

Ocean’s heat content diverges (the bias is bigger than the CTL’s and has a growing trend),

but the EcdiF-generated Arctic Ocean’s heat content tends to converge. Since there is no

data constraint in the Arctic Ocean, the ENSF’s divergence or the EcdiF’s convergence has

to be the consequence of the model’s responding to oceanic data constraints in other basins,

either due to ocean interior heat/salt transports or owing to the changes of atmospheric

conditions based different SSTs, or both. This aspect will also be further explored in follow-

up studies.

4.2 El Nino – Southern Oscillation (ENSO) variability

Figure. 1 has shown that EcdiF produces quite different upwelling and undercurrents in trop-

ical oceans. This section discusses how these different tropical upwelling and undercurrents
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influence the seasonal-interannual variability of tropical oceans.

First, the seasonal cycles of the domain-averaged temperature and salinity over Nino3.4

(170oW-120oW, 5oS-5oN) in 4 cases – the free model (CM2.1) control (CTL) (top), the ENSF

(middle-upper) and EcdiF (middle-lower) assimilations, and the “truth” (TRUTH) (bottom)

model (CM2.0) run – are presented in Figs. 12 and 13. We can see a stronger annual-cycle

of both temperature and salinity in TRUTH than in CTL for the top ocean. The differ-

ence of temperature’s annual cycle in CM2.0 and CM2.1 reflects the different wind-driven

thermocline seasonal oscillations in the two models (Wittenberg et al. 2006). The stronger

annual cycle of the top ocean’s salinity in TRUTH than in CTL can mainly be attributed

to stronger seasonal oscillation of precipitation in CM2.0 relative to CM2.1. With oceanic

data constraint, relative to CTL, while ENSF and EcdiF strengthen/weaken the subsurface

cold/warm peak in boreal spring/winter, both assimilations weaken the surface warm peak

in boreal later spring and cold peak in boreal later summer. While both ENSF and EcdiF

underestimate the strength of the temperature’s annual cycle, the EcdiF’s estimate is im-

proved from the ENSF’s. In contrast, compared to the CTL’s, the salinity’s annual cycle in

ENSF and EcdiF is progressively strengened approaching to TRUTH. While ENSF overes-

timates the strength, the EcdiF’s is closer to TRUTH although with a little underestimate.

The comparative different effect of assimilation in upper ocean temperature and salinity may

be related to the fact that the atmosphere responds to SST but not to SSS, while the latter

is influenced by the atmosphere-generated precipitation.

In contrast to the annual cycle, consistent with the spectrum analyses in Wittenberg et

al. (2006), the time series of the anomalies of the Nino3.4 temperature and salinity (Figs. 14

and 15) show much stronger ENSO variability in CTL (CM2.1, top) than in TRUTH (CM2.0,

bottom). Compared to the TRUTH’s, the CTL’s ENSO events have too strong intensity and

too short period, and thus they have entirely different ENSO phases in the whole 25 years [see
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the green (CTL) and black (TRUTH) lines in the bottom panel]. Note that all anomalies are

referenced to the TRUTH’s climatology, and then due to the existence of annual cycle errors

as shown in Figs. 12 and 13, the anomaly’s time series of CTL, ENSF (middle-upper) and

EcdiF (middle-lower) show a noticeble seasonal oscillation, especially around the thermocline

layer. Through ODA, overall speaking both ENSF and EcdiF reduce the intensity and

prolong the period of ENSO events, and the phases of ENSO events converge to to the

TRUTH’s [see the red (ENSF) and blue (EcdiF) lines in the bottom panel], decreasing

the Rms exceeding 50% (64% for temperature and 54% for salinity). However, due to the

artifact vertical motions induced by the inconsistent upper and deep ocean data constraints,

the ENSF assimilation still remains too strong cold/warm phases near surface/thermocline.

By improving vertical structure of data constraints, the EcdiF assimilation further reduces

the errors of the phase and intensity of ENSO events, reducing extra 20%/12% Rms error for

the temperature/salinity anomalies. Again, due to the existence of the seasonal-cycle’s error

of the EcdiF assimilation (compare the middle-lower panels to bottom panels in Figs. 12

and 13), the variability of the temperature and salinity anomalies in EcdiF still shows a

seasonal-cycle pattern but it is much weaker than that of ENSF.

It is worth to mention that in the coupled model assimilation framework the improvement

of the estimate of the tropical ocean’s variability made by EcdiF represents a balance result

between oceanic data constraint and surface forcings provided by the atmosphere. Further

understanding about the contributions of better atmospheric conditions due to improved

SSTs to improving the ENSO variability will be given in follow-up studies. In addition, from

diagnostics and analyses in this and previous sections we can see it’s relatively easier for

an ensemble filter to capture the tropical ocean’s variability than to construct the ocean’s

hydrography. This is because the temporally-varying error statistics used in the filtering

computation (linear regression, for instance) represent short timescale activities very well but

it’s rather diffcult representing slow processes of the heat and salt transport (the formation
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of water property) by a finite ensemble.

5 North Atlantic meridional overturning circulation (NA

MOC)

The North Atlantic Ocean is a major basin that should be concerned when we reconstruct

the oceanic states by an ODA approach since the well-known North Atlantic meridional

overturning circulation (NA MOC) is an important part of global overturning. Thus, the

NA MOC has been recognized as one of the most important oceanic circulations that have

significant impacts on the global climate (e.g. Delworth and Greatbatch 2000, Gent and

Danabasoglu 2004).

The NA MOC is a synthesis product of ocean, atmosphere and hydrological cycle. 4

major factors that influence the NA MOC’s phase and variability are listed in Fig. 16 as a

schematic illustration. For example, while its active/inactive regimes tie with the large-scale

heat/salt transport in a global thermohaline circulation structure, the sea surface forcings

from atmosphere and the fresh water forcings from ice and land runoff as well as their

interaction with oceanic transport may play a more important role to form its interannual

variability. All these working with the complex NA topographic features set a particular

challenge for the estimate of the NA MOC through a data assimilation approach. This

section serves as a very initial step in our long term efforts to reconstruct the NA MOC’s

phase and variability using data and models: examining the impact of the improved-estimate

of thermohaline structure on the NA MOC’s estimate.

The errors of the Atlantic MOC’s stream functions produced by the CM2.1 free model

control (CTL) (top) and the ENSF (middle) and EcdiF (bottom) assimilations are presented

in Fig. 17 in depth space (left) and potential density space (right). Same as the global

overturning, CM2.1 produces a stronger overturning in the Atlantic basin than CM2.0 does.
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In fact, the overturning in the Atlantic Ocean is a major part of global overturning, which

can be seen from the similar error patterns of overturning stream function in the northern

hemisphere NA channel (panel a of Fig. 17) and the whole northern hemisphere (panel a of

Fig. 5).

However, comparing Fig. 17 to Fig. 5, we find a different picture of the Atlantic over-

turning stream function from global overturning produced by ENSF. While ENSF reduces

the errors of the stream function at the NA high latitudes, due to spurious velocities induced

from inconsistent vertical structure of data adjustments, ENSF produces strong spurious

recirculations at the tropical Atlantic Ocean (Fig. 17b), instead of a strong reverse circula-

tion of global overturning at tropics (Fig. 5b). This is consistent with too strong watermass

transformation crossing the isopycnal lines (panel e of Fig. 17) and northward heat transport

(panel b of Fig. 7). Figure 7 has shown it is the Indian Ocean (middle panel) that makes

the strong southward heat/salt transport at tropics and contributes the reverse circulation

to the global overturning in ENSF.

Unlike other basins where the inflation of filtering adjustments by pre-computed stan-

dard deviations of anomalies is very important to estimate the vertical structure of ocean,

due to the existence of deep convections, the North Atlantic Ocean prefers the use of a pure

temporally-varying error covariance for effectively extracting observational signals. (Test ex-

periments have shown that the introduction of any stationary error statistics into the filtering

computation in the NA domain degrades the estimate of the NA thermohaline structure.)

Thus, as described in section 2.3, the use of pre-computed standard deviations of anomalies

in Eq. (2) for EcdiF is not beyond 20oN. As shown before, in EcdiF the vertically-consistent

data constraint corrects the vertical structure of ocean at low latitudes of the Atlantic Ocean

and therefore eliminates the spurous velocity there. As the result, the strong spurious recir-

culations of meridional overturning at the tropical Atlantic are eliminated mostly (panels cf
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of Fig. 17) and the heat/salt transport is coherently improved by EcdiF (Fig. 7).

Checking the NA’s water property produced by ENSF and EcdiF can further our under-

standing of the formation mechanism of the NA water so as to obtain some clues to improve

the state estimate of the NA Ocean in the future. Figures 18abc presents the time mean

potential density (σ0) layers (shaded) and isohalines (contours) at 35oN in CTL (panel a),

ENSF (panel b), EcdiF (panel c) and TRUTH (panel d). The corresponding thickness of in-

termediate water layer (shaded) and potential vorticity (contours) distributions over the NA

domain are shown in right column (panels efgh). Compared to the CTL’s and TRUTH’s,

the EcdiF’s water property has been improved from the ENSF’s greatly. While EcdiF sub-

stantially improves the NA’s subtropical gyre, it fails to improve the subpolar gyre. In fact

the EcdiF’s intermediate water layer over the Labrador Sea is too shallow so that the σ0(27)

isopycnal surface vanishes in part of the Sea. This must be associated with the incorpora-

tion of oceanic heat/salt transport and external forcings provided by the atmosphere, ice

and land over the far north NA regions, which shall be explored in follow-up studies.

Finally, the time series of the maximum value of the NA MOC stream functions in 40-65oN

in 2 model simulations and 2 data assimilations are shown in Fig. 19. Again, CM2.1 (CTL)

(green) simulates a stronger overturning at the NA high latitudes than CM2.0 (TRUTH)

(black). The trend that both ENSF’s (red) and EcdiF’s (blue) curves tend to converge to the

truth shows the leading-order importance of the local thermohaline structure built by oceanic

data constraint for the estimation of the NA’s overturning. However, the improvement of

heat/salt transport in low latitudes also tend to refine the NA MOC’s variability. Previ-

ous studies (Delworth and Greatbatch 2000; Delworth and Dixon 2006) have shown that

the surface forcings provided by the atmosphere is important to determine the NA MOC’s

interannual variability. It is expected that a fully-coupled data assimilation including atmo-

spheric data constraint could provide a more self-consistent NA MOC estimate. From a view
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of initializing numerical climate prediction, it is extremely important to obtain an estimate

of NA MOC’s phase and variability which is consistent with the large scale heat/salt trans-

port and external forcings from other coupled components. These require long term efforts

along the line of coupled data assimilation with the advance of coupled modeling.

6 Conclusion and discussions

Following Zhang and Rosati (2008), this study examines the impact of the ensemble circulation-

dependent inflation filter (EcdiF) on oceanic climate detection in ‘biased’ ODA twin experi-

ments. Two coupled GCMs – GFDL’s CM2.0 and CM2.1 – are used. Observations are drawn

from the CM2.0’s IPCC simulation based on the 2005 Argo network and then assimilated

into CM2.1. Due to the existence of model bias and limitation of the representation of a finite

ensemble for the low frequency deep ocean variability, a standard ensemble filter (ENSF)

fails to construct a consistent vertical structure and develops spurious velocities. EcdiF uses

pre-computed standard deviations of anomalies to inflate the deep ocean’s covariance for

improving the consistency of data constraints in upper and deep oceans.

EcdiF improves substantially the tropical undercurrent, upwelling, and the associated

Western Boundary Current (WBC) systems as well as subtropical gyre structure. Con-

sequently, the world ocean’s hydrographic features such as global overturning, pycnocline

depth and the correlation of SSH and pycnocline are constructed better. Coherently, the

estimates of the large time scale trends of basin scale heat content and salinity, and seasonal-

interannual variability of tropical ocean states are improved. Results also showed that the

Indian Ocean, especially the North Indian Ocean, is the most sensitive basin on the covari-

ance formulation used in the assimilation, in which the stronger atmospheric feedbacks are

invloved. The local thermohaline structure plays a leading-order role for estimating the large

scale phase of the North Atlantic meridional overturning circulation (NA MOC) but a more
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accurate estimate of the NA MOC’s variability requires refined external forcings and internal

transports of heat and salt upon the observing system.

This study only focuses on the ODA side of the CDA system under a twin experiment

framework, directly using the dataset of the “truth” to compute the anomaly’s standard

deviation, a key to implement EcdiF. On one hand, the results from the twin experiment

do serve as a mirror for us to understand the results of the real data assimilation. GFDL’s

coupled reanalyses by ENSF using real observed atmospheric (NCEP/NCAR reanalysis) and

oceanic (in situ measurements and SSTs) data do not present any strong reverse circulation

in global overturning at tropics but do present the recirculation at the tropical Atlanic

Ocean. The former suggests that the atmospheric data constraint in a full CDA experiment

relax greatly the destruction of coupled balances in the North Indian Ocean, while the

latter means that even though in a full CDA circumstance, the inconsistency of oceanic

data constraints in upper and deep oceans still exists. On the other hand, due to the

use of the “true” oceanic states in computing the inflation standard deviation, the results

presented in this study probably represent the most optimiestic case. An open question is

how to obtain the pre-computed standard deviation in real data assimilation. Although a

primary implementation of the EcdiF in the GFDL’s coupled reanalysis, which uses model

simulated oceanic states to compute the inflation standard deviation, has eliminated most of

the recirculation at the tropical Atlantic Ocean, the sensitivities of EcdiF on the accurancy

of the pre-computed standard deviation still needs to be examined. If strong sensitivity

exists, an iteratively-refined procedure may be necessary for future coupled resanalyses. In

addition, a bias correction assimilation scheme implemented in both atmospheric and oceanic

data assimilations (Dee and Silva 1998; Dee 2005) is expected to further improve the CDA

performance. Continuously enhancing the quality of the estimate of oceanic circulations

within an improved hydrographic environment is the direction of our long term efforts since

this is critically important for our understanding of climate changes and the initialization of
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seasonal to decadal numerical predictions.
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FIGURE CAPTIONS

Fig. 1 Time mean (1981-2000) errors of oceanic temperature (top), salinity (middle-upper),

u-component (middle), v-component (middle-lower) and vertical velocity (bottom) on

the x-z plane, averaged over 20oS-20oN, in a free model control integration (left, denoted

by CTL), a standard ensemble filter assimilation (middle, denoted by ENSF) and an

ensemble circulation-dependent inflation filter assimilation (right, denoted by EcdiF).

The contour interval is 0.05oC for temperature between 0.5 and -0.5oC, 0.02 PSU for

salinity between 0.1 and -0.1 PSU, 0.2× 10−2 m s−1 for u- and v-components and 0.2

m day−1 for vertical velocity.

Fig. 2 Time mean errors of global oceanic temperature (left) and salinity (right) assimilation

errors over 0-4 km produced by ENSF (middle) and EcdiF (bottom). The CM2.1 free

model control integration (CTL) is also plotted in top panels as the reference. The

contour interval is 0.1oC for temperature and 0.01PSU for salinity.

Fig. 3 Time mean errors of sea surface temperature (SST, left) and salinity (SSS, right)

produced by ENSF (middle) and EcdiF (bottom) assimilations. The CM2.1 free model

control integration (CTL) is also plotted in top panels as the reference. The contour

interval is 0.2oC for SST and 0.05PSU for SSS.

Fig. 4 Time mean errors of the zonal (τx, left) and meridional (τy, right) wind stress pro-

duced by ENSF (middle) and EcdiF (bottom) assimilations. The contour interval is

0.01 (for τx) and 0.005 (for τy) N m−1.

Fig. 5 Time mean errors of the global overturning stream function in depth space (left)

and potential density space (right) produced by the free model control (CTL) (ad),

the ENSF (be) and EcdiF (cf) assimilations. The contour interval is 5/10 Sv as the

absolute value of the stream functions is less/greater than 30 Sv.
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Fig. 6 Variation of the zonal-depth averaged oceanic temperature (a) and salinity (c) and

northward heat (b) and salt (d) transport with latitudes in the CTL (black-dashed),

ENSF (red), EcdiF (green) and TRUTH (black).

Fig. 7 Time mean of the northward heat (left, abc) and salt (right, def) transports in

TRUTH (top, ad) and the errors of these transports in ENSF (middle, be) and EcdiF

(bottom, cf). The contour intervals are 0.2 PW (1015 Watts) for values between -2 –

2 PW, otherwise 2 PW for a); 1 PW for values between -1 – 1 PW, otherwise 0.1 PW

for b) and c); 0.1 ×108 kg/s for values between -1 – 1 ×108 kg/s, otherwise 1 ×108

kg/s for d), e) and f).

Fig. 8 Variation of the zonal mean pycnocline depth with latitude in TRUTH (solid-black),

CTL (green), ENSF (red) and EcdiF (blue). The corresponding root mean squared

(Rms) error and mean error (Mer) are marked in parenthesis.

Fig. 9 Time mean errors of the pycnocline depth (left) and the sea surface height (SSH)

(right) produced by the CTL model simulation (top) and the ENSF (middle) and EcdiF

(bottom) assimilations. Contour interval is 20 m for pycnocline depth and 0.02 m for

SSH.

Fig. 10 Time series of the top 4 km heat content (averaged temperature) in individual

basins and the World Ocean in CTL (green), ENSF (red), EcdiF (blue) and TRUTH

(black).

Fig. 11 Same as Fig. 10 but for salinity.

Fig. 12 Annual cycle of the Nino3.4’s temperature in CTL (top), ENSF (middle-upper),

EcdiF (middle-lower) and TRUTH. The contour interval is 0.2oC.

Fig. 13 Same as Fig. 12 except for salinity and the contour interval is 0.01PSU.
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Fig. 14 Time series of the anomalies of the Nino3.4’s temperature in CTL (top), ENSF

(middle-upper), EcdiF (middle) and TRUTH (middle-lower), and their vertical inte-

grals (bottom). The contour interval is 0.5oC and the values in parenthesis is the

corresponding Rms error.

Fig. 15 Same as Fig. 14 except for salinity and the contour interval is 0.05PSU in top 4

panels.

Fig. 16 Schematic illustration of 4 factors influencing the North Atlantic meridional over-

turning circulation.

Fig. 17 Time mean errors of the North Atlantic meridional overturning circulation stream

function in depth space for CTL (a), ENSF (b), EcdiF (c) and potential density space

for CTL (d), ENSF (e), EcdiF (f). The contour interval is 2 Sv.

Fig. 18 Upper-ocean potential density (color-shaded) and isohaline at 35oN (left, panels

abc) and the thickness of intermediate water layer (σ0 between 27 and 27.5) (color-

shaded) and the PV’s distribution (contour) over the North Atlantic domain (right,

panels def). The contour interval is 0.2 PSU/10−7 s−1m−1 for panel abc/def .

Fig. 19 Time series of the maximum value of the North Atlantic meridional overturning

circulation stream function over 40oN-65oN in CTL (green), ENSF (red), EcdiF (blue)

and TRUTH (black). The thick lines are the corresponding 13-point running smooth

for each case. The number in parenthesis is the corresponding Rms error.
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Table 1: Values of parameters in Eq. (2).

name physical meaning value range value in this study
α on-off switch for inflation 0 or 1 0 for the North Atlantic (> 20oN)

1 elsewhere
Z0 inflation starting depth [0, +∞) 0
ah e-folding horizontal scale [0, +∞) 1000 km
av e-folding vertical scale [0, +∞) 2×gridbox’s thickness

av
b e-folding vertical scale for expanding [0, +∞) 4av,ENSF

b ≈ 4 km for salinity

the adjustment at the end of obs 2av,ENSF
b ≈ 2 km for temperature



Figure 1: Time mean (1981-2000) errors of oceanic temperature (top), salinity (middle-
upper), u-component (middle), v-component (middle-lower) and vertical velocity (bottom)
on the x-z plane, averaged over 20oS-20oN, in a free model control integration (left, denoted by
CTL), a standard ensemble filter assimilation (middle, denoted by ENSF) and an ensemble
circulation-dependent inflation filter assimilation (right, denoted by EcdiF). The contour
interval is 0.05oC for temperature between 0.5 and -0.5oC, 0.02 PSU for salinity between
0.1 and -0.1 PSU, 0.2× 10−2 m s−1 for u- and v-components and 0.2 m day−1 for vertical
velocity.



Figure 2: Time mean errors of the global oceanic temperature (left) and salinity (right) over
0-4 km produced by ENSF (middle) and EcdiF (bottom). The CM2.1 free model control
integration (CTL) is also plotted in top panels as the reference. The contour interval is 0.1oC
for temperature and 0.01PSU for salinity.



Figure 3: Time mean errors of sea surface temperature (SST, left) and salinity (SSS, right)
produced by ENSF (middle) and EcdiF (bottom) assimilations. The CM2.1 free model
control integration (CTL) is also plotted in top panels as the reference. The contour interval
is 0.2oC for SST and 0.05PSU for SSS.



Figure 4: Time mean errors of the zonal (τx, left) and meridional (τy, right) wind stress
produced by ENSF (middle) and EcdiF (bottom) assimilations. The contour interval is 0.01
(for τx) and 0.005 (for τy) N m−1.



Figure 5: Time mean errors of the global overturning stream function in depth space (left)
and potential density space (right) produced by the free model control (CTL) (ad), the ENSF
(be) and EcdiF (cf) assimilations. The contour interval is 5/10 Sv as the absolute value of
the stream functions is less/greater than 30 Sv.



Figure 6: Variation of the zonal-depth averaged oceanic temperature (a) and salinity (c) and
northward heat (b) and salt (d) transport with latitudes in CTL (green), ENSF (red), EcdiF
(green) and TRUTH (black).



Figure 7: Time mean of the northward heat (left, abc) and salt (right, def) transports
in TRUTH (top, ad) and the errors of these transports in ENSF (middle, be) and EcdiF
(bottom, cf). The contour intervals are 0.2 PW (1015 Watts) for values between -2 – 2 PW,
otherwise 2 PW for a); 1 PW for values between -1 – 1 PW, otherwise 0.1 PW for b) and c);
0.1 ×108 kg/s for values between -1 – 1 ×108 kg/s, otherwise 1 ×108 kg/s for d), e) and f).



Figure 8: Variation of the zonal mean pycnocline depth with latitude in TRUTH (solid-
black), CTL (green), ENSF (red) and EcdiF (blue). The corresponding root mean squared
(Rms) error and mean error (Mer) are marked in parenthesis.



Figure 9: Time mean errors of the pycnocline depth (left) and the sea surface height (SSH)
(right) produced by the CTL model simulation (top) and ENSF (middle) and EcdiF (bottom)
assimilations. Contour interval is 20 m for pycnocline depth and 0.02 m for SSH.



Figure 10: Time series of the top 4 km heat content (averaged temperature) in individual
basins and the world ocean in CTL (black-dashed), ENSF (red), EcdiF (green) and TRUTH
(black).



Figure 11: Same as Fig. 10 but for salinity.



Figure 12: Annual cycle of the Nino3.4’s temperature in CTL (top), ENSF (middle-upper),
EcdiF (middle-lower) and TRUTH. The contour interval is 0.2oC.



Figure 13: Same as Fig. 12 except for salinity and the contour interval is 0.01PSU.



Figure 14: Time series of the anomalies of the Nino3.4’s temperature in CTL (top), ENSF
(middle-upper), EcdiF (middle) and TRUTH (middle-lower), and their vertical integrals
(bottom). The contour interval is 0.5oC and the number in parenthesis is the corresponding
Rms error.



Figure 15: Same as Fig. 14 except for salinity and the contour interval is 0.05PSU in top 4
panels.



Figure 16: Schematic illustration of 4 factors influencing the North Atlantic meridional
overturning circulation. The background green contours are the 25-year time mean of the
overturning circulation stream function in TRUTH (the CM2.0 model simulation).



Figure 17: Time mean errors of the North Atlantic meridional overturning circulation stream
function in depth space for CTL (a), ENSF (b), EcdiF (c) and potential density space for
CTL (d), ENSF (e), EcdiF (f). The contour interval is 2 Sv.



Figure 18: Upper-ocean potential density (color-shaded) and isohaline at 35oN (left, panels
abcd) and the thickness (ζ) of intermediate water layer [between σ0(27) and σ0(27.5)] (color-
shaded) and the PV (f/ζ) distribution (contours) over the North Atlantic domain (right,
panels efgh). The contour interval is 0.2 PSU/10−7 s−1m−1 for panels abcd/efgh.



Figure 19: Time series of the maximum value of the North Atlantic meridional overturning
circulation stream function over 40oN-65oN in CTL (green), ENSF (red), EcdiF (blue) and
TRUTH (black). The thick lines are the corresponding 13-point running smooth for each
case. The number in parenthesis is the corresponding Rms error.


